Synthesis of Hydrazones of Anabasinylacetic Acid and Structure of Its Isopropylidenehydrazone

I. V. Kulakov^a, O. A. Nurkenov^b, Zh. B. Satpaeva^b, and K. M. Turdybekov^c

^a Dostoyevski Omsk State University, pr. Mira 55a, Omsk, 644077 Russia e-mail: kulakov@chemomsu.ru

^b Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Karaganda, Kazakhstan
^c International Research and Production Holding "Phytochemistry," Karaganda, Kazakhstan

Received February 10, 2014

Abstract—Some hydrazones based on *N*-anabasinylacetic acid hydrazide have been synthesized. Structure of *N*-isopropylidenehydrazone of *N*-anabasinylacetic acid has been studied by X-ray diffraction.

Keywords: alkaloid, anabasine, hydrazone, X-ray diffraction

DOI: 10.1134/S1070363214080180

Hydrazides chemistry is of emerging interest due to broad range of physiological activity of these compounds, including pronounced antituberculous activity [1, 2]. For example, we synthesized hydrazides and acylhydrazide of *N*-aminoacetic acids based on physiologically active ephedrine alkaloids [3] and studied their antituberculous activity [4]. Some derivatives of anabasine alkaloid showed biological activity as well [5].

Hydrazide **II** was prepared via hydrazinolysis of the esters (methyl or ethyl) of *N*-anabasinylacetic acid **I** with hydrazine hydrate (yield 57%) [2].

$$\begin{array}{c|c} & & & \\ & N & & \\ & N & \\ & N & \\ & & \\$$

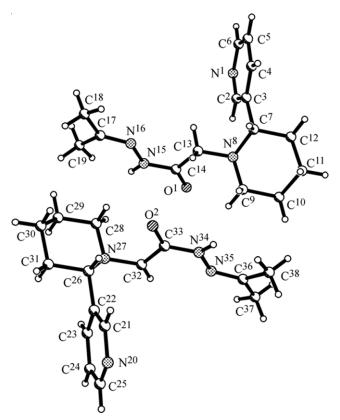
Unfortunately, hydrazide II was isolated in the form of viscous oil; therefore, its further modification and studies (including structural and biological) were complicated. After a number of attempts to obtain the crystalline hydrazide, we isolated its hydrazone with acetone; the latter was formed in the course of short heating of hydrazide II in acetone. Isopropylidenehydrazone III isolated after cooling down was white crystallizing solid.

Similarly, condensation of hydrazide of *N*-anabasinylacetic acid **II** with certain aromatic aldehydes (*p*-fluorobenzaldehyde or 5-bromosalicylaldehyde) afforded novel *N*-arylidenehydrazones of anabasinylacetic acid, **IV** and **V**. The synthesized hydrazones **III**–**V** were white or yellow crystalline powders soluble in polar organic solvents (Scheme 1).

In ¹H NMR spectra of **III–V**, methylene protons of the NCH₂C(O) moiety resonated as two doublets due to their non-equivalence (H^{10a} 2.64 and H^{10b} 2.94 ppm, J 16.2 Hz).

Structure of hydrazone III was determined by X-ray diffraction and compared with that of hydrazide of N-d-pseudoephedrinylacetic acid hydrochloride [6]. According to XRD, a unit cell of III contained two molecules IIIa and IIIb in the crystallographically independent positions, connected via the intermolecular hydrogen bond (see figure).

The bond lengths and angles (Tables 1 and 2) in the molecule of **III** were close to typical of common organic molecules [6, 7]. Piperidine ring adopted a conformation of almost ideal *chair* ($\Delta C_s^{10} = 1.74$ Å), similar to the cases of anabasine *O,O*-diethyl thiophosphate and anabasine *O,O*-diisopropyl thiophosphate molecules [8]. Pyridine ring was planar within ± 0.007 Å. Despite the bulky substituent at the N⁸ atom, the pyridine ring was equatorially oriented with respect to the piperidine ring (torsion angle $C_s^3 C_s^7 C_s^8 C_s^9 = C_s^8 C_s$


Scheme 1.

 $R^{1} = CH_{3}, R^{2} = CH_{3}$ (III); $R^{1} = n$ -F- $C_{6}H_{4}, R^{2} = H$ (IV); $R^{1} = 2$ -OH-5-Br $C_{6}H_{3}, R^{2} = H$ (V).

-171.1°). The presence of methylene bridge with a hydrazide moiety did not create additional steric hindrance for axial orientation of the pyridine ring with respect to the piperidine moiety, as it was found by X-ray diffraction for other anabasine derivatives [9–11].

EXPERIMENTAL

IR spectra (KBr) were recorded with the Fourier transformed Nicolet AVATAR-320 spectrometer. ¹H NMR spectra (DMSO-*d*₆) were registered with the Bruker DRX500 spectrometer (500 MHz) relative to internal TMS reference. Mass spectra were obtained with the FINNIGAN MAT.INCOS 50 instrument

General view of N-isopropylidenehydrazone of N-anabasinylacetic acid **III** molecule.

(70 eV). Melting points were determined with the Boetius apparatus. The reaction progress was monitored with TLC (Silufol UV-254 plate, propan-2-ol-benzene-ammonia 10:5:2, developing with iodine vapor).

X-Ray diffraction studies were performed at 173 K with the Bruker P4 automatic diffractometer (Mo K_{α} irradiation, graphitic monochromator, $\theta/2\theta$ -scanning, $2\theta \le 56^{\circ}$). The crystals were monoclinic (0.6 × 0.4 × 0.3 mm), the unit cell parameters were as follows: a 6.086(1), b 28.161(1), c 8.949(1) Å, β 97.10°, V 1522.0(1) Å³, space group $P2_1$, d_{calc} 1.197 g cm⁻³, C₃₀H₄₄N₈O₂, Z 2. Intensity of 7100 independent reflections was measured. The structure was solved by direct method and refined in anisotropic approximation (nonhydrogen atoms) by full-matrix least square method. Positions of H atoms were geometrically calculated using the *rider* model. Final refinement parameters: R 0.1063, wR_2 0.2667. The structure was solved and refined using SIR-2002 and SHELXL-97 [12] software, respectively.

N'-Isopropylidenehydrazone of *N*-anabasinylacetic acid (III). A mixture of 2.34 g (10 mmol) of hydrazide *N*-anabasinylacetic acid I and 50 mL of acetone was refluxed during 3 h. After cooling, the formed crystals were filtered off and washed with cold acetone. Yield 2.52 g (92%), mp 125–126°C. IR spectrum (KBr), v, cm⁻¹: 3185 (NH), 1676 (C=O), 1577 (C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.32–1.80 m (6H, H^{6–8}), 1.86 s (3H, CH₃), 1.94 s (3H, CH₃), 2.34 t (1H, H⁵, *J*_{5,6} 11.9), 2.64 d (1H, NCH^a, *J*_{ab} 16.8), 2.94 d (1H, NCH^b, *J*_{ba} 16.2), 2.99 br.d (1H, H^a, *J* 11.48), 3.41 br.d (1H, H^e, *J* 11.12), 7.36 d.d (1H, H², *J*_{2,1} 4.76, *J*_{2,3} 7.78), 7.77 d (1H, H³, *J*_{3,2} 7.84), 8.47 d (1H, H¹, *J*_{1,2} 4.76), 8.55 s (1H, H⁴), 9.80 s (1H, NH). Mass spectrum (EI, 70 eV), m/z (I_{rel} , %): 234 (1.3) [M]⁺, 175 (100), 176 (13), 161 (69), 132 (36), 92 (17), 44 (55), 42 (27), 41 (21).

N'-(4-Fluorobenzylidene)hydrazone of N-anabasinylacetic acid (IV). 0.52 mL (0.62 g, 5 mmol) of

Table 1. Bond lengths and bond angles in the molecule of III

Bond	d, Å	Angle	ω, deg	Bond	d, Å	Angle	ω, deg
$O^1 - C^{14}$	1.238(6)	$C^2N^1C^6$	117.3(5)	C^4 – C^5	1.384(7)	$O^{1}C^{14}N^{15}$	120.4(4)
$O^2 - C^{33}$	1.248(6)	$C^{9}N^{8}C^{13}$	109.0(4)	C^5-C^6	1.376(8)	$O^1C^{14}C^{13}$	122.9(5)
N^1-C^2	1.337(7)	$C^9N^8C^7$	112.9(4)	$C^7 - C^{12}$	1.543(7)	$N^{15}C^{14}C^{13}$	116.6(4)
N^1 – C^6	1.345(8)	$C^{13}N^8C^7$	110.1(4)	$C^9 - C^{10}$	1.528(8)	$N^{16}C^{17}C^{19}$	124.8(5)
N^8-C^9	1.453(6)	$C^{14}N^{15}N^{16}$	120.1(4)	C^{10} – C^{11}	1.521(9)	$N^{16}C^{17}C^{18}$	116.8(5)
$N^8 - C^{13}$	1.457(6)	$C^{17}N^{16}N^{15}$	117.8(4)	C^{11} – C^{12}	1.520(7)	$C^{19}C^{17}C^{18}$	118.4(4)
N^8-C^7	1.479(6)	$C^{25}N^{20}C^{21}$	118.0(4)	C^{13} – C^{14}	1.520(6)	$N^{20}C^{21}C^{22}$	124.1(5)
N^{15} – C^{14}	1.348(6)	$C^{32}N^{27}C^{28}$	111.1(4)	C^{17} – C^{19}	1.502(7)	$C^{21}C^{22}C^{23}$	117.6(4)
$N^{15} - N^{16}$	1.389(5)	$C^{32}N^{27}C^{26}$	114.0(4)	C^{17} – C^{18}	1.511(7)	$C^{21}C^{22}C^{26}$	121.3(4)
N^{16} – C^{17}	1.280(6)	$C^{28}N^{27}C^{26}$	114.8(4)	C^{21} – C^{22}	1.376(7)	$C^{23}C^{22}C^{26}$	120.9(4)
N^{20} – C^{25}	1.346(8)	$C^{33}N^{34}N^{35}$	119.7(4)	C^{22} – C^{23}	1.413(7)	$C^{24}C^{23}C^{22}$	118.4(5)
N^{20} – C^{21}	1.354(7)	$C^{36}N^{35}N^{34}$	117.2(4)	C^{22} – C^{26}	1.519(6)	$C^{23}C^{24}C^{25}$	120.6(5)
N^{27} – C^{32}	1.461(6)	$N^1C^2C^3$	124.6(5)	C^{23} – C^{24}	1.373(7)	$N^{20}C^{25}C^{24}$	121.2(5)
N^{27} – C^{28}	1.472(6)	$C^4C^3C^2$	116.5(4)	C^{24} – C^{25}	1.397(8)	$N^{27}C^{26}C^{22}$	111.3(4)
N^{27} – C^{26}	1.474(6)	$C^4C^3C^7$	121.3(4)	C^{26} – C^{31}	1.533(7)	$N^{27}C^{26}C^{31}$	110.4(4)
N^{34} – C^{33}	1.343(6)	$C^2C^3C^7$	122.0(4)	C^{28} – C^{29}	1.520(7)	$C^{22}C^{26}C^{31}$	107.7(4)
$N^{34} - N^{35}$	1.393(5)	$C^5C^4C^3$	119.8(5)	C^{29} – C^{30}	1.532(8)	$N^{27}C^{28}C^{29}$	112.0(4)
N^{35} – C^{36}	1.281(6)	$C^6C^5C^4$	119.1(5)	C^{30} – C^{31}	1.531(7)	$C^{28}C^{29}C^{30}$	109.3(5)
C^2 – C^3	1.393(7)	$N^1C^6C^5$	122.7(5)	C^{32} – C^{33}	1.522(6)	$C^{31}C^{30}C^{29}$	108.5(4)
$C^3 - C^4$	1.391(7)	$N^8C^7C^3$	111.0(4)	C^{36} – C^{37}	1.481(7)	$C^{30}C^{31}C^{26}$	111.0(4)
$C^{3}-C^{7}$	1.513(6)	$N^8C^7C^{12}$	110.4(4)	C^{36} – C^{38}	1.533(7)	$N^{27}C^{32}C^{33}$	116.4(4)
		$C^{3}C^{7}C^{12}$	106.8(4)			$O^2C^{33}N^{34}$	119.8(4)
		$N^8C^9C^{10}$	111.8(5)			$O^2C^{33}C^{32}$	122.0(4)
		$C^{11}C^{10}C^9$	109.6(5)			$N^{34}C^{33}C^{32}$	118.2(4)
		$C^{12}C^{11}C^{10}$	108.2(5)			$N^{35}C^{36}C^{37}$	117.4(5)
		$C^{11}C^{12}C^7$	113.0(4)			$N^{35}C^{36}C^{38}$	124.7(5)
		$N^8C^{13}C^{14}$	112.9(4)			$C^{37}C^{36}C^{38}$	117.9(5)

p-fluorobenzaldehyde was added dropwise to a stirred solution of 1.17 g (5 mmol) of *N*-anabasinylacetic acid in 20 mL of ethanol. The mixture was stirred at 50–60°C during 60 min. After cooling, yellow precipitate was filtered off and recrystallized from ethanol. Yield 0.85 g (50%), mp 70–71°C. 1 H NMR spectrum, δ, ppm (*J*, Hz): 1.32–1.80 m (6H, H^{6–8}), 2.37 t (1H, H⁵, *J*_{5,6} 11.7), 2.69 d (1H, NCH^a, *J*_{ab} 16.5), 2.99 d (1H, NCH^b, *J*_{ba} 16.4), 3.08 br.d (1H, H^a_e, *J* 11.08), 3.42 br.d (1H, H^a_e, *J* 11.0), 7.17 m (2H, Ar), 7.28 m (2H, Ar), 7.36 d.d (1H, H², *J*_{2,1} 4.8, *J*_{2,3} 7.9), 7.82 d (1H, H³, *J*_{3,2} 7.9), 8.48

d (1H, H¹, $J_{1,2}$ 4.78), 8.55 s (1H, N=CH), 8.59 s (1H, H⁴), 10.90 s (1H, NH).

N'-(5-Bromo-2-hydroxybenzylidene)hydrazone of N-anabasinylacetic acid (V) was obtained similarly from 1.17 g (5 mmol) of hydrazide of N-anabasinylacetic acid, 20 mL of ethanol and 1.0 g (5 mmol) of 5-bromosalicylaldehyde. Yield 1.79 g (86%), mp 97–98°C (propan-2-ol). 1 H NMR spectrum, δ, ppm (J, Hz): 1.33–1.80 m (6H, H⁶⁻⁸), 2.35 t (1H, H⁵, J_{5,6} 11.5), 2.72 d (1H, NCH^a, J_{ab} 15.92), 3.05 d (1H,

Angle	τ, deg						
$C^{14}N^{15}N^{16}C^{17}$	172.7(4)	$C^4C^3C^7C^{12}$	-85.4(6)	$N^{15}N^{16}C^{17}C^{18}$	177.3(4)	$C^{23}C^{22}C^{26}C^{31}$	71.7(6)
$C^{33}N^{34}N^{35}C^{36}$	-173.2(4)	$C^{2}C^{3}C^{7}C^{12}$	89.2(6)	$C^{25}N^{20}C^{21}C^{22}$	0.3(8)	$C^{32}N^{27}C^{28}C^{29}$	175.2(4)
$C^6N^1C^2C^3$	-0.9(10)	$C^{13}N^8C^9C^{10}$	179.7(4)	$N^{20}C^{21}C^{22}C^{23}$	-1.4(8)	$C^{26}N^{27}C^{28}C^{29}$	-53.6(6)
$N^1C^2C^3C^4$	1.6(9)	$C^7N^8C^9C^{10}$	-57.6(6)	$N^{20}C^{21}C^{22}C^{26}$	174.3(5)	$N^{27}C^{28}C^{29}C^{30}$	56.3(6)
$N^1C^2C^3C^7$	-173.3(6)	$N^8C^9C^{10}C^{11}$	59.8(6)	$C^{21}C^{22}C^{23}C^{24}$	0.9(7)	$C^{28}C^{29}C^{30}C^{31}$	-59.1(7)
$C^2C^3C^4C^5$	-1.4(8)	$C^{9}C^{10}C^{11}C^{12}$	-57.4(6)	$C^{26}C^{22}C^{23}C^{24}$	-174.8(5)	$C^{29}C^{30}C^{31}C^{26}$	59.2(7)
$C^7C^3C^4C^5$	173.5(5)	$C^{10}C^{11}C^{12}C^7$	55.5(7)	$C^{22}C^{23}C^{24}C^{25}$	0.6(8)	$N^{27}C^{26}C^{31}C^{30}$	-54.8(6)
$C^3C^4C^5C^6$	0.6(8)	$N^8C^7C^{12}C^{11}$	-52.8(6)	$C^{21}N^{20}C^{25}C^{24}$	1.3(9)	$C^{22}C^{26}C^{31}C^{30}$	-176.4(5)
$C^2N^1C^6C^5$	-0.1(10)	$C^{3}C^{7}C^{12}C^{11}$	-173.6(5)	$C^{23}C^{24}C^{25}N^{20}$	-1.8(9)	$C^{28}N^{27}C^{32}C^{33}$	69.0(5)
$C^4C^5C^6N^1$	0.2(10)	$C^9N^8C^{13}C^{14}$	-78.4(5)	$C^{32}N^{27}C^{26}C^{22}$	-58.7(5)	$C^{26}N^{27}C^{32}C^{33}$	-62.6(5)
$C^9N^8C^7C^3$	171.1(4)	$C^7N^8C^{13}C^{14}$	157.3(4)	$C^{28}N^{27}C^{26}C^{22}$	171.5(4)	$N^{35}N^{34}C^{33}O^2$	-174.7(5)
$C^{13}N^8C^7C^3$	-66.8(5)	$N^{16}N^{15}C^{14}O^{1}$	176.0(5)	$C^{32}N^{27}C^{26}C^{31}$	-178.3(4)	$N^{35}N^{34}C^{33}C^{32}$	8.0(7)
$C^9N^8C^7C^{12}$	52.9(5)	$N^{16}N^{15}C^{14}C^{13}$	-5.7(7)	$C^{28}N^{27}C^{26}C^{31}$	52.0(5)	$N^{27}C^{32}C^{33}O^2$	-0.6(7)
$C^{13}N^8C^7C^{12}$	175.0(4)	$N^8C^{13}C^{14}O^1$	3.9(7)	$C^{21}C^{22}C^{26}N^{27}$	134.9(5)	$N^{27}C^{32}C^{33}N^{34}$	176.7(4)
$C^4C^3C^7N^8$	154.2(4)	$N^8C^{13}C^{14}N^{15}$	-174.3(4)	$C^{23}C^{22}C^{26}N^{27}$	-49.4(6)	$N^{34}N^{35}C^{36}C^{37}$	-176.8(4)
$C^{2}C^{3}C^{7}N^{8}$	-31.2(7)	$N^{15}N^{16}C^{17}C^{19}$	-2.9(7)	$C^{21}C^{22}C^{26}C^{31}$	-103.9(5)	$N^{34}N^{35}C^{36}C^{38}$	4.9(7)

Table 2. Torsion angles in the molecules of III

NCH^b, J_{ba} 15.99), 3.11 br.d (1H, H_a⁹, J 11.0), 3.40 br.d (1H, H_e⁹, J 11.09), 6.88 d (1H, Ar, J 8.74), 7.35 d.d (1H, H², $J_{2,1}$ 5.03, $J_{2,3}$ 8.06), 7.41 d (1H, Ar, J 8.75), 7.71 s (1H, Ar), 7.86 d (1H, H³, $J_{3,2}$ 7.85), 8.46 d (1H, H¹, $J_{1,2}$ 4.65), 8.53 s (1H, N=CH), 8.61 s (1H, H⁴), 11.17 s (1H, OH), 11.31 s (1H, NH).

REFERENCES

- 1. Kolla, V.E. and Berdinskii, I.S., *Farmakologiya i khimiya proizvodnykh gidrazina* (Pharmacology and Chemistry of Hydrazine Derivatives), Yoshkar-Ola: Mariiskoe Knizhnoe Izd., 1976.
- 2. Gazaliev, A.M., Zhurinov, M.Zh., Nurkenov, O.A., and Kulakov, I.V., *Khimiya i farmakologiya gidrazidov* (Chemistry and Pharmacology of Hydrazides), Almaty: Gylym, 2002.
- 3. Nurkenov, O.A, Kulakov, I.V., and Gazaliev, A.M., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 10, p. 1743.
- Kulakov, I.V., Nurkenov, O.A., Gazalieva, M.A., Zhaugasheva, S.K., and Isakova, Zh.O., *Pharm. Chem. J.*, 2007, vol. 41, no. 11, p. 620. DOI: 10.1007/s11094-008-0020-2.
- Kulakov, I.V., Nurkenov, O.A., Akhmetova, S.B., Seidakhmetova, R.B., and Zhambekov, Z.M., *Pharm. Chem. J.*, 2011, vol. 45, no. 1, p. 17. DOI: 10.1007/

- s11094-011-0551-9.
- Kulakov, I.V., Nurkenov, O.A., Ainabaev, A.A., Turdybekov, D.M., Turdybekov, K.M., and Gazaliev, A.M., Russ. J. Gen. Chem., 2007, vol. 77, no. 9, p. 1610. DOI: 10.1134/S1070363207090186.
- Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., *J. Chem. Soc., Perkin Trans.* 2, 1987, p. S1. DOI: 10.1039/P298700000S1.
- 8. Gazaliev, A.M., Zhurinov, M.Zh., Dyusembaev, S.A., Turdybekov, K.M., Lindeman, S.V., Maleev, A.V., and Struchkov, Yu.V., *Khim. Prirodn. Syr'ya*, 1990, no. 4, p. 500.
- Kulakov, I.V., Nurkenov, O.A., Turdybekov, D.M., Ibragimov, B.T., Talipov, S.A., Zhambekov, Z.M., Ainabaev, A.A., and Turdybekov, K.M., *Chem. Nat. Compd.*, 2009, vol. 45, no. 2, p. 209. DOI: 10.1007/s10600-009-9284-3.
- Kulakov, I.V., Nurkenov, O.A., Turdybekov, D.M., and Turdybekov, K.M., *Chem. Nat. Compd.*, 2010, vol. 46, no. 2, p. 257. DOI: 10.1007/s10600-010-9582-9.
- 11. Kulakov, I.V. and Turdybekov, D.M., *Chem. Nat. Compd.*, 2010, vol. 46, no. 4, p. 586. DOI: 10.1007/s10600-010-9681-7.
- 12. Sheldrick, G.M., SHELX-97. Programs for Crystal Structure Analysis (release 97-2), University of Göttingen, Germany, 1997.